archive-fr.com » FR » N » NICOLASPOUILLARD.FR

Total: 307

Choose link from "Titles, links and description words view":

Or switch to "Titles and links view".

  • s α α α α α zero false λf λx x suc λn λf λx n f f x λn λf n f f add λsuc λm m suc suc mult λzero λadd λm λn m add n zero zero add open LC renaming focus to focus defocus to defocus id α Tm α id parseTm λx x true α Tm α true parseTm λx λ x false α Tm α false parseTm λ λx x pair α Tm α pair parseTm λx λy λf f x y fst α Tm α fst parseTm λtrue λp p true true parseTm λp p λx λ x snd α Tm α snd parseTm λfalse λp p false false parseTm λp p λ λx x uncurry α Tm α uncurry parseTm λtrue λfalse λf λp f p true p false true false parseTm λf λp f p λx λ x p λ λx x app α Tm α app parseTm λf λx f x comp α Tm α comp parseTm λf λg λx f g x α α α α α zero α Tm α zero false λf λx x suc α Tm α suc parseTm λn λf λx n f f x λn λf n f f add α Tm α add parseTm λsuc λm m suc suc mult α Tm α mult parseTm λzero λadd λm λn m add n zero zero add α Tm α zero zero suc n suc n n replicapp n V 1 V 0 where replicapp α Tm α Tm α Tm α replicapp zero t u u replicapp suc n t u t replicapp n t u 2 1 α Tm α 2 1 add 2 1 2 2 α Tm α 2 2 mult 2 2 3 4 α Tm α 3 4 mult 3 4 module KAM tests where open LC KAM using Tmø runTm for steps Tmø Tmø runTm for steps t n run t arg 1 arg 0 for n steps 2 1 3 runTm 2 1 for 19 steps now 3 2 1 3 refl test test module AAM tests where open LC AAM using Tmø runTm for steps Tmø Tmø runTm for steps t n run t arg 1 arg 0 for n steps 2 1 3 runTm 2 1 for 29 steps now 3 2 1 3 refl test test showTm tests List map showTm id app uncurry λx0 x0 λx0 λx1 x0 x1 λx0 λx1 λx2 λx3 x2 x3 x0 x3 x1 λx0 λx1 x0 λx0 λx1 x1 showTm tests refl test β red p p ok PathOk p s s ok Tm Ok s s String Set test β red p p ok s s ok s let p parsePath p p ok in let t parseTm s s ok ø in T showTm maybe defocus p t β red t focus p t s TODO focus defocus support the issue is with the Supply that β red expects to focus a supply we would need

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Examples.Tests.html (2015-10-11)
    Open archived version from archive



  • α N export N export The fresh for relation Binder World Set N N ø b Binder b ø N ø N ø suc α World b Binder b α suc b b α N suc N suc inclusion between worlds Rel World L zero N N coerce α World β World α β Name α Name β N coerce N coerce refl α World α α N refl N refl trans α World β World γ World α β β γ α γ N trans N trans ø α World ø α N ø N ø α World β World b Binder α β b α b β N N α World b Binder b α α b α N N field 1 World World N 1 N 1 1 World World N 1 N 1 1 α zero α 1 worldSym WorldSymantics World N worldSym N worldSym worldSym record ø ø 1 1 1 1 field TODO derivable cong 1 α World β World α β α 1 β 1 N cong 1 N cong 1 cong 1 α World β World α β α 1 β 1 N cong 1 N cong 1 1 1 α World α 1 α 1 N 1 1 N 1 1 1 inj α World β World α 1 β 1 α β N 1 inj N 1 inj 1 inj α World β World α 1 β 1 α β N 1 inj N 1 inj unctx 1 1 α World β World α 1 β 1 α β N unctx 1 1 N unctx 1 1 ø 1 ø ø 1 ø N ø 1 ø N ø 1 ø module W WorldOps N worldSym module W WorldOps N worldSym field World World W W α zero α α

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Record.LogicalRelation.html (2015-10-11)
    Open archived version from archive


  • Implem open import NomPa Implem LogicalRelation Internals nomPa NomPa nomPa nomPa nomPa mk World Name Binder zero suc name binder ø Nameø export ø suc coerce refl trans ø 1 cong 1 derivable cong 1 1 1 1 inj 1

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Implem.LogicalRelation.html (2015-10-11)
    Open archived version from archive


  • where open NomPa Examples LC DataTypes dataKit open DataKit dataKit open DataKit dataKit data Tm α α α World α α Tm α Tm α Set where V x x x Name α x x Tm α V x V x t t u u t Tm α t t u Tm α u u Tm α t u t u b b t t b Binder b b t

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Examples.LC.DataTypes.Logical.html (2015-10-11)
    Open archived version from archive


  • fv name x x fv ν b t rm b fv t fv tt fv t u fv t fv u fv inj t fv t fv inj t fv t fv roll t fv t module CmpAny Env α β World Set cmpName α α Env α α Name α Name α Bool extend α α b b Env α α Env b α b α where cmpAny α α Δ Env α α Any α Any α Bool cmpAny Δ name x name x cmpName Δ x x cmpAny Δ ν b t ν b t cmpAny extend Δ t t cmpAny Δ t u t u cmpAny Δ t t cmpAny Δ u u cmpAny Δ inj t inj t cmpAny Δ t t cmpAny Δ inj t inj t cmpAny Δ t t cmpAny Δ roll t roll t cmpAny Δ t t cmpAny tt tt true cmpAny false open CmpAny Cmp Name id extendNameCmp public Any α Any α Any α Bool Any cmpAny module TraverseAny E E app Applicative E Env trKit TrKit Env E Any where open Applicative E app open TrKit trKit tr α β Env α β Any α E Any β tr Δ name x trName Δ x tr Δ ν b t pure ν tr extEnv b Δ t tr Δ t u pure tr Δ t tr Δ u tr Δ inj t pure inj tr Δ t tr Δ inj t pure inj tr Δ t tr Δ roll t pure inj tr Δ t tr tt pure tt open TraverseAGen name TraverseAny tr public renaming rename to renameAny rename to renameAny export to exportAny close to closeAny coerce to coerceAny coerceø to coerceøAny renameCoerce to renameCoerceAny renameA to renameAnyA open SubstGen name coerceAny TraverseAny tr id

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Universal.RegularTree.html (2015-10-11)
    Open archived version from archive


  • a bf BindingForm a a b xs Vec T α a ys Vec T b α a T α module Sexp Tm Cst Set where import NomPa Examples LC DataTypes open NomPa Examples LC DataTypes dataKit Cst data Form Set where Form 2 data BindingForm Set where BindingForm 0 1 Let BindingForm 1 1 data Atom Set where κ Cst Atom open Sexp Form BindingForm Atom α t u T α T α t u S t u α b t T b α T α b t B b t Let α b t T α u T b α T α Let b t u B Let b t u α Tm α T α V x V x t u t u b t b t Let b t u Let b t u κ A κ α T α Tm α V x V x A κ κ S t u t u B b t b t B Let b t u Let b t u open import Relation Binary PropositionalEquality α t Tm α t t V x refl t u cong t u b t cong b t Let b t u cong

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Universal.Sexp.html (2015-10-11)
    Open archived version from archive


  • derived nominal suc b α b α suc b b α α β b α β b α b β de Bruijn unctx 1 1 α β α 1 β 1 α β 1 inj α β α 1 β 1 α β mixes dist 1 α b b α 1 suc b α 1 dist 1 α b suc b α 1 b α 1 coerce α β α

    Original URL path: https://nicolaspouillard.fr/publis/NomPa.agda/NomPa.Derived.WorldInclusion.html (2015-10-11)
    Open archived version from archive

  • TD compilation
    aux autres langages Hélàs non disponible à la bibliothèque de l X et un livre en ligne de référence sur le développement en OCaml La bibliothèque OCaml C est avec la commande man ou en ligne Besoin de doc pendant les TD C est par ici D autres questions sur OCaml C est par là Editeur Vous pouvez choisir votre éditeur parmi ceux déjà installés sur les machines de la

    Original URL path: http://nicolaspouillard.fr/td-compil/ (2015-10-11)
    Open archived version from archive