archive-fr.com » FR » N » NICOLASPOUILLARD.FR

Total: 307

Choose link from "Titles, links and description words view":

Or switch to "Titles and links view".

  • polymorphism The definitions in this file are reexported by Relation Nullary module Relation Nullary Core where open import Data Empty open import Level Negation infix 3 Set Set P P Decidable relations data Dec p P Set p Set p

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Nullary.Core.html (2015-10-11)
    Open archived version from archive



  • inj x x B C inj x x A B C x f g inj x f x f g inj y g y a b c A Set a B Set b C Set c A C B C A B C map a b c d A Set a B Set b C Set c D Set d A C B D A B C D map f

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Data.Sum.html (2015-10-11)
    Open archived version from archive


  • Maybe type The definitions in this file are reexported by Data Maybe module Data Maybe Core where open import Level data Maybe a A Set a Set a where just

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Data.Maybe.Core.html (2015-10-11)
    Open archived version from archive


  • currently the functor laws are not included here module Category Functor where open import Function open import Level record RawFunctor F Set Set Set suc where infixl 4 field A B A B F A F B A B A

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Category.Functor.html (2015-10-11)
    Open archived version from archive


  • module Category Functor Extras where open import Relation Binary Fmap i j I Set i J Set j Rel I Rel J F I J Set Fmap F A B

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Category.Functor.Extras.html (2015-10-11)
    Open archived version from archive


  • the applicative functor laws are not included here module Category Applicative where open import Data Unit open import Category Applicative Indexed RawApplicative f Set f Set f Set RawApplicative F RawIApplicative I λ F module RawApplicative f F Set f

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Category.Applicative.html (2015-10-11)
    Open archived version from archive


  • OPTIONS universe polymorphism module Category Monad Identity where open import Category Monad Identity f Set f Set f Identity A A IdentityMonad f RawMonad Identity f IdentityMonad record return λ

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Category.Monad.Identity.html (2015-10-11)
    Open archived version from archive


  • a type which is analogous to the Rec type constructor used in the current version of ΠΣ data Rec a A Set a Set a where fold x A Rec A unfold a A Set a Rec A A unfold fold x x If guardedness preserving type constructors is enabled one can define types like by recursion open import Data Sum open import Data Unit Set Rec zero zero inj

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Coinduction.html (2015-10-11)
    Open archived version from archive