archive-fr.com » FR » N » NICOLASPOUILLARD.FR

Total: 307

Choose link from "Titles, links and description words view":

Or switch to "Titles and links view".
  • Signatures.PLUGIN.Options
    bool ref val sanitization script string ref val ignore auto bool ref val plugin bool ref val just plugin bool ref val native plugin bool ref val make links bool ref val nostdlib bool ref val program to execute bool ref val must clean bool ref val catch errors bool ref val use menhir bool ref val show documentation bool ref val recursive bool ref val targets string list ref

    Original URL path: http://nicolaspouillard.fr/ocamlbuild/html/type_Signatures.PLUGIN.Options.html (2015-10-11)
    Open archived version from archive



  • A B Set a b where constructor mkBijectiveREL field injectiveREL InjectiveREL A B surjectiveREL SurjectiveREL A B BijectiveRel a A Set a Rel A Set BijectiveRel A BijectiveREL A A private probably already defined somewhere on a A Set a f A A Rel A Rel A on f i j f i f j module Pres Bij Props a A Set a f A A f inj i j

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.Bijection.html (2015-10-11)
    Open archived version from archive


  • Indexed Core public By instantiating an indexed setoid one gets an ordinary setoid at i s s I Set i Setoid I s s I B Setoid S at i record Carrier S Carrier i S isEquivalence record refl S refl sym S sym trans S trans where module S Setoid S Simple properties of indexed binary relations Generalised implication infixr 4 a b A Set a B A Set

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.Indexed.html (2015-10-11)
    Open archived version from archive


  • Homogeneous Rel i a I Set i I Set a Level Set Rel A REL A A Simple properties of indexed binary relations Reflexivity Reflexive i a I Set i A I Set a Rel A Set Reflexive i B Reflexive i Symmetry Symmetric i a I Set i A I Set a Rel A Set Symmetric i j B Sym i j Transitivity Transitive i a I Set i

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.Indexed.Core.html (2015-10-11)
    Open archived version from archive


  • A Rel A Irreflexive Antisymmetric Asymmetric irr antisym asym irrefl antisym λ x y y x irrefl antisym x y y x x y asym antisym a A Set a Rel A Rel A Asymmetric Antisymmetric asym antisym asym x y y x elim asym x y y x asym irr a A Set a Rel A Rel A Respects Symmetric Asymmetric Irreflexive asym irr resp sym asym x y x y x y asym x y y x where y y y y y y proj resp x y x y y x y x y x proj resp sym x y y y total refl a A Set a Rel A Rel A Respects Symmetric Total total refl resp sym total refl where refl refl x y x y with total x y inj x y x y inj y x proj resp x y proj resp sym x y y x total dec dec a A Set a Rel A Rel A Antisymmetric Total Decidable Decidable total dec dec refl antisym total dec where dec Decidable dec x y with total x y inj x y yes x y inj y x with x y yes x y yes refl x y no x y no λ x y x y antisym x y y x tri asym a A Set a Rel A Rel A Trichotomous Asymmetric tri asym tri x y x y x y with tri x y tri x y x y x y tri x y x y x y tri x y x y x y tri irr a A Set a Rel A Rel A Respects Symmetric Trichotomous Irreflexive tri irr resp sym tri asym irr resp sym tri asym tri tri dec a A Set a Rel A Rel

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.Consequences.html (2015-10-11)
    Open archived version from archive


  • n 0 0 zero refl n 0 0 suc n begin suc n 0 refl n 0 0 n 0 n 0 0 n 0 Note that some modules contain generalised versions of specific instantiations of this module For instance the module Reasoning in Relation Binary PropositionalEquality is recommended for equational reasoning when the underlying equality is Relation Binary PropositionalEquality open import Relation Binary module Relation Binary EqReasoning s s

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.EqReasoning.html (2015-10-11)
    Open archived version from archive


  • Consequences module Relation Binary Consequences Core where open import Relation Binary Core open import Data Product subst resp a p A Set a Rel A P Rel A p Substitutive p P Respects subst resp P subst λ x y

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.Consequences.Core.html (2015-10-11)
    Open archived version from archive


  • open Pre preorder g i j begin where open Pre preorder open import Relation Binary module Relation Binary PreorderReasoning p p p P Preorder p p p where open Preorder P infix 4 IsRelatedTo infix 2 infixr 2 infix 1 begin This seemingly unnecessary type is used to make it possible to infer arguments even if the underlying equality evaluates data IsRelatedTo x y Carrier Set p where relTo x

    Original URL path: http://nicolaspouillard.fr/publis/nameless-painless.agda/Relation.Binary.PreorderReasoning.html (2015-10-11)
    Open archived version from archive